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A B S T R A C T

Nutrient fertilization plays a critical role in maintaining soil fertility and improving crop productivity and
quality. Precise nutrient management of horticultural crops is a major challenge worldwide as it relies pre-
dominantly on chemical fertilizers. Traditional fertilizers are not only costly for the producer, but may be
harmful to humans and the environment. This has led to the search for environmentally friendly fertilizers,
particularly those with high nutrient-use efficiency, and nanotechnology is emerging as a promising alternative.
Nanofertilizers offer benefits in nutrition management through their strong potential to increase nutrient use
efficiency. Nutrients, either applied alone or in combination, are bound to nano-dimensional adsorbents, which
release nutrients very slowly as compared to conventional fertilizers. This approach not only increases nutrient-
use efficiency, but also minimizes nutrient leaching into ground water. Furthermore, nanofertilizers may also be
used for enhancing abiotic stress tolerance and used in combination with microorganisms (the so-called nano-
biofertilizers) provide great additional benefits. However, although the benefits of nanofertilizers are un-
doubtedly opening new approaches towards sustainable agriculture, their limitations should also be carefully
considered before market implementation. In particular, the extensive release of nanomaterials into the en-
vironment and the food chain may pose a risk to human health. In conclusion, although nanofertilizers use in
agriculture is offering great opportunities to improve plant nutrition and stress tolerance to achieve higher yields
in a frame of climate change, not all nanomaterials will be equally safe for all applications. The risks of nano-
fertilizers should be carefully examined before use, and further biotechnological advances are required for a
correct and safe application of nanomaterials in agriculture.

1. Introduction

Agriculture, including horticultural crops, is a major economic
sector related to the production and provision of a wide range of spe-
cialty crops for food, feed, and ornamental purposes and it currently
represents a worldwide multitrillion dollar industry [1]. Limited re-
sources and the rapidly-increasing human population, which is pre-
dicted to reach 9.6 billion by 2050, pushes the sector forward de-
manding the development of a very efficient agriculture while allowing
reduction of worldwide poverty and hunger [2]. Chemical fertilizers
provide plants with nutrients for optimal growth and productivity;
however, current production practices cannot fulfill the growing de-
mand of food without reliance on the extensive use of fertilizers [2].

Given the limited amount of additional arable lands and scarce water
resources globally, the use of more efficient mineral fertilizers is a ne-
cessary approach to fulfill the increase in food production required to
feed this increasing population and support economic development.
Furthermore, intensive application of conventional fertilizers over ex-
tended periods of time has caused serious environmental constraints
worldwide including ground water pollution, water eutrophication, soil
quality degradation, and air pollution [3].

Limited nutrient use efficiency and environmental constraints as-
sociated with the use of chemical fertilizers remain a major problem
and a hindrance for achieving reasonable sustainability in agriculture.
Additionally, cost increases resulting from over-application of chemical
fertilizers reduce profit margins for growers. Low nutrient use
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efficiencies are typically the result of high release rates of conventional
fertilizers overwhelming the actual nutrient absorption rate by plants,
and/or the transformation of fertilizers/nutrients to forms that are not
bioavailable to crops [4]. As such, there is a great interest towards the
development of new innovative fertilizer sources in order to increase
the fertilizer use efficiency [5]. Several strategies have been proposed to
increase fertilizer use efficiency, such as the use of precision fertiliza-
tion, split or localized application, fertigation, and the use of nano-
fertilizers [6]. In the context of sustainable agriculture, application of
nanotechnology for the development of new types of fertilizers is re-
garded as one of the potentially promising options for significantly
boosting global horticultural production to meet the growing food de-
mands of population with the added benefits of sustainability under the
current scenario of climate change [7,8]. A correct application of na-
nofertilizers can feed plants gradually in a controlled manner [9] along
with the benefits of increasing the fertilizer use efficiency, minimizing
volatilization and leaching, and lessening environmental hazards [10].
Several studies, which will be discussed here, have revealed that some
nanofertilizers have the potential to increase crop productivity by en-
hancing seed germination, seedling growth, photosynthesis, nitrogen
metabolism, and protein and carbohydrate synthesis, aside from im-
proving stress tolerance. Among other advantages, nanofertilizers can
be applied in a comparatively smaller amount, ultimately reducing the
transport expenditures and increasing ease of application. However,
nanofertilizers may also have some disadvantages, which can limit their
full implementation in the market.

2. Advantages of nanofertilizers

There is a growing pressure on the agriculture sector to fulfill the
continuously increasing demands of the consistently growing human
population. Chemical fertilizers are thought to be indispensable for
improving crop productivity and are extensively applied through dif-
ferent methods [8]. However, crop usage is generally less than half of
the applied amount of fertilizer [11], and the remaining amount of
minerals intended to reach the targeted site may leach down, so that
they become fixed in soil or contribute to water pollution [12]. For

instance, it has been reported that key macronutrient elements, in-
cluding N, P, and K, applied to the soil are lost by 40–70 %, 80–90 %
and 50–90%, respectively, causing a considerable loss of resources
[8,10,11]. Furthermore, growers tend to use repeated applications of
these fertilizers in order to achieve desired higher yields, which con-
trarily can lead to a decrease in soil fertility and increase salt con-
centrations thereby causing future crop losses. Furthermore, uneven use
of fertilization without control on nutrient release can deteriorate
product quality. Hence, it is crucial to develop slow/control release
fertilizers not only to increase crop production and quality, but also to
enhance the sustainability in horticultural production [8]

The horticulture sector today is facing an intense pressure for
achieving considerable efficiency in food security using alternatives to
chemical fertilizers [12]. New approaches and technologies are re-
quired if global horticultural production and demand are to be fulfilled
in an economically and environmentally sustainable manner. Materials
that are of up to 100 nm particle size in at least one dimension are
generally classified as nanomaterials [13,14] and are the basis for na-
notechnology [15]. There are various types of nanomaterials such as
single or multiwalled nanotubes, magnetized iron nanoparticles, copper
(Cu), aluminum (Al), silver (Ag), gold (Au), zinc (Zn) and zinc oxide
(ZnO), silica (Si), cerium oxide (Ce2O3), and titanium dioxide (TiO2),
among others [16–19]. Given the unique properties of nanomaterials
such as high surface-to-volume ratio, controlled-release kinetics to
targeted sites and sorption capacity, nanotechnology has a high re-
levance for the design and use of new fertilizers [8]. Nanofertilizers are
nutrients encapsulated/coated with nanomaterial for the control and
slow delivery of one or more nutrients in order to satisfy the imperative
nutrient requirements of plants [20]. These “smart fertilizers” are cur-
rently being regarded as a promising alternative [21], to the extreme
that they are in several cases considered to be the preferred form of
fertilizers over the conventional ones [22,23].

The interaction of nanomaterials and fertilizers, due to the high
reactivity of nanomaterials, results in an increased and effective ab-
sorption of nutritional elements and essential compounds for plants
[24]. The efficiency of nanofertilizers depends on several factors
(Fig. 1). Uptake, distribution and accumulation of nanofertilizers in

Fig. 1. Factors that influence uptake, distribution and accumulation of nanofertilizers in crops. Intrinsic factors (nanofertilizers), extrinsic factors (soil) and exposure
route.
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crops will strongly depend on both intrinsic and extrinsic factors, and
the exposure route. Particle size and surface coatings are the most
important intrinsic factors influencing the efficiency of nanoparticles
application, and extrinsic factors, such as organic matter, soil texture or
soil pH will also strongly affect its potential application [25,26]. In
addition, nanofertilizers can be absorbed through both plant roots or
leaves, so that the exposure route and mode of application significantly
influence the behavior, bioavailability, and uptake of nanofertilizers in
crops [25].

Nanofertilizer applications in agriculture may serve as an opportu-
nity to achieve sustainability towards global food production. There is a
tremendous food production pressure on the sector as nutritional defi-
ciencies in human populations are mainly because of using less nu-
tritious food and a low dietary intake of fruits and vegetables [27].
Important benefits of nanofertilizers over conventional chemical ferti-
lizers rely on their nutrient delivery system [12]. They regulate the
availability of nutrients in crops through slow/control release me-
chanisms. Such a slow delivery of nutrients is associated with the
covering or cementing of nutrients with nanomaterials [10]. By taking
advantage of this slow nutrient delivery, growers can increase their
crop growth because of consistently long-term delivery of nutrients to
plants. For example, nutrients can be released over 40–50 days in a slow
release fashion rather than the 4–10 days by the conventional fertilizers
[11]. In conventional nutrient management systems, half of the applied
fertilizer is lost in leaching or becomes unavailable for the plant be-
cause of excessive availability hindering the roots to uptake or some-
times causing toxic effects on the plant. Furthermore, nanofertilizers
reduce the need for transportation and application costs [28]. Another
advantage of using small quantities is that the soil does not get loaded
with salts that usually are prone to over-application using conventional
fertilizers on a short- or long-term basis [29]. Another advantage for
using nanofertilizers is that they can be synthesized according to the
nutrient requirements of intended crops [30]. In this regard, biosensors
can be attached to a new innovative fertilizer that controls the delivery
of the nutrients according to soil nutrient status, growth period of a
crop or environmental conditions [29]. Plants are sensitive towards
micronutrient availability during crop growth and negative effects re-
sult in the form of fruits and vegetables with poor nutrition [31,32]. In
conventional nutrient management system, it is very difficult to control
the micronutrient delivery to a specific crop, but nanofertilizers provide
the opportunity to the growers for supplying adequate amounts of nu-
trients [8,33]. For instance, most of the horticultural growing areas
worldwide are deficient in certain micronutrients (e.g. Zn and Fe [31]),
so nanofertilizers can act as effective and efficient fortification products
for crop and fresh food products. Nanofertilzers increase the bioavail-
ability of nutrients through their high specific surface area, miniature
size and high reactivity [12]. On the other hand, by providing balanced
nutrition, nanofertilizers enable the plant to combat various biotic and
abiotic stresses, with overall clear advantages. However, the extensive
use of nanofertilizers in agriculture may have some important limita-
tions, which must also be considered and will be discussed later in
detail.

3. Production and use of nanofertilizers

Nanomaterials or nanoparticles for nanofertilizers can be synthe-
sized by different approaches, top-down, bottom-up or using biological
approaches (Fig. 2). The top-down approach is based on the reduction
of size to nanoscale well-organized assemblies from the bulk materials.
Top-down is a physical method based on milling materials. The lim-
itation in this approach is the low control in the size of nanoparticles
and a greater quantity of impurities. The bottom-up approach begins at
the atomic or molecular scale to build up nanoparticles using chemical
reactions. It is a chemically controlled synthetic process, therefore, this
method controls the particle size better and reduces impurities [34,35].
In addition to chemical and physical approaches, nanoparticles can be

synthesized biologically, the so-called biosynthesis approach. There are
several natural sources for this purpose, some of them are plants, fungi
and bacteria based. The advantage in this approach is the greater
control of the toxicity and size of the particle [25,36]. For every ap-
plication the most recommended approach will require a synthesis
capable of producing mass scale particles with controlled physico-
chemical properties resulting in a homogeneous and target-specific
nanoformulation. Consequently, bottom-up is in most cases the most
effective approach used nowadays for nanofertilizer production [7,34].

Scientists are under enormous pressure to deliver unique technol-
ogies that not only fulfill the grower’s production demands, but also
meet the economic budget of both the growers and production industry
[1]. Nanoscience may provide the solution to cater these challenges by
providing nanomaterials of high performance [23,37]. As discussed
earlier, these innovative fertilizers aim to control the nutrient active
ingredient release at a very slow pace in accordance or commensurate
with crop growth. The main aim of using these nanofertilizers is to
increase the nutrient use efficiency thereby leading to precision agri-
culture. In this context, nanofertilizer smart technology is expected to
lead to a step forward to make the agriculture sector sustainable
[38,39]. These fertilizers can be an excellent replacement for the con-
ventional fertilizers that are required in bulk quantities, and ad-
ditionally can save the soil and water from nutrient pollution [23]. The
use of different nanofertilizers including N, P, K, Cu, Fe, Mn, Mo, Zn and
carbon nanotubules have shown an excellent control release for a tar-
geted delivery efficiency [10,12]. Various forms of nanoparticles, their
oxides nanoparticles, and nanoformulations of conventional nutrients
have been converted into valuable inputs in nanofertilizer form. Con-
version of these nanoparticles have depicted promising results when
applied at a specific concentration on different crops [40].

Nanoparticles are made from organic and inorganic nanomaterials.
Additionally, their synthesis also varies in terms of physical or chemical
methods employed. The inorganic nanomaterials include the metal
oxides such as ZnO, TiO2, MgO and AgO, and others. On the other hand,
the organic nanomaterials include lipids, polymers and carbon nano-
tubules. Nanoparticles of different materials are of usually four types,
i.e. silver, gold, alloy and magnetic [(like Fe3O4 (magnetite) and Fe2O3

(maghemite)]. In this regard, the nanofertilizers are classified on the
basis of the nutrient categorization. Hence, there are classically two
types of nanofertilizers, i.e., micronutrient nanofertilizers and macro-
nutrient nanofertilizers. Furthermore, nanobiofertilizers are also
emerging as an additional approach [12,8].

3.1. Macronutrient nanofertilizers

Macronutrients (e.g., nitrogen (N), phosphorus (P), potassium (K),
magnesium (Mg), sulphur (S) and calcium (Ca) have been combined
with nanomaterials for the purpose to deliver an accurate amount of
nutrients to the crops and minimize their bulk requirements with extra-
benefits of decreasing purchasing and transportation costs [4,41].
These macronutrient nanofertilizers comprise one or more nutrients in
encapsulated form with specific nanomaterial. NPK consumption in the
agriculture sector is projected to increase 265 million tons in 2020 [42].
As such, there is an urgent need to carry out research from a practical
point of view to develop new fertilizers with high nutrient efficiency
and being friendly to the environment to replace the conventional
macronutrient fertilizers. As a nitrogen source, urea-modified zeolites,
hydroxyapatite and mesoporous silica nanomaterials have been in-
vestigated as slow/control release nanofertilizers showing promising
results [12,15]. Biosafe nanofertilizer was developed as a source of P
that is a nanostructured water-phosphorite suspension (particle size of
60–120 nm). It was the first phosphatic nanofertilizer acquired from
raw phosphorite of Tatarstan’s Syundyukovskoe deposits through ul-
trasonic material dispersion. In this experiment, it was observed that
the morphometric indices, fresh yield and fruit yield as well as pro-
duction quality of tested plant species increased several-fold [43].
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3.2. Micronutrient nanofertilizers

Micronutrients are those elements that are required by the plant in
trace/low quantities, but are essential to maintain vital metabolic
processes in plants [44]. Plant growth is highly dependent on zinc (Zn)
because it is a structural part or regulatory co-factor for various en-
zymes and proteins [45]. This micronutrient is also involved in the
synthesis of carbohydrates, protein metabolism, and the regulation of
auxins, and provides defense to plants against harmful pathogens [46].
On the other hand, boron (B) is not only involved in the biosynthesis of
plant cell wall and its lignification, but also plays an important role in
plant growth and various other physiological processes [47]. Hence, it
is imperative to apply the proper amounts of Zn and B to horticultural
crops for attaining maximum yields with good quality. The effect of
foliar application of two micronutrient nanofertilizers of Zn and B at
three different concentrations was tested and it was observed that low
amounts of B (34mg tree−1) or Zn nanofertilizers (636mg tree−1) in-
creased fruit yield by 30% in pomegranate trees (Punica granatum cv.
Ardestani) [38]. It was also reported that cucumber seedlings grown in
nutrient solution including rubber type nanomaterial as a Zn source
increased shoot and fruit yield compared with those grown in com-
mercial Zn-sulfate fertilizer [48]. Likewise, application of Zn nano-
particles as nanofertilizer in pearl millet (Pennisetum americanum) sig-
nificantly enhanced crop production (grain yield) by 38%, which was
also associated with an improvement of 15% in shoot length, 4% in root
length, 24% in root area, 24% in chlorophyll content, 39% in total
soluble leaf protein and 12% in plant dry biomass compared to the
control in a period of 6 weeks [49]. Also, it was observed a considerable
yield increase using Zn nanoparticles as a nutrient source in rice, maize,
wheat, potato, sugarcane and sunflower [15]. Moreover, stabilized
maghemite nanoparticles applied through irrigation in solution form in
soil as a nanofertilizer improved the growth rate and chlorophyll con-
tents compared to the control (chelated iron) in Brassica napus [50].

Iron (Fe) is also an important nutrient required by plants in minute
quantities for maintaining proper growth and development. Although it
is required in trace amounts, its deficiency or excess leads to impair-
ment in key plant metabolic and physiological processes, thereby
leading to reduced yield [51]. Therefore, application of Fe is imperative
to optimize yields in horticultural crops. In this respect, the effect of
iron oxide nanoparticles and ferric ions was studied at different con-
centrations on the physiological and molecular changes in Citrus
maxima plants. It was observed that iron oxide nanoparticles entered
the plant roots, but their translocation from root to shoot did not occur.
Among the different levels used, 20mg/L iron oxide nanoparticles had
no impact on plant growth, while 50mg/L significantly improved the
chlorophyll contents and root activity by 23% and 24%, respectively,
compared to controls. In contrast, 100mg/L negatively influenced all

these characteristics, thus indicating that the effect of iron oxide na-
noparticles is concentration dependent [52].

Manganese (Mn) plays a vital role not only in metabolic and phy-
siological processes but it also provides the plant with the ability to
endure various environmental stresses by acting as a co-factor of var-
ious enzymes. It is also essential for photosynthesis, the biosynthesis of
ATP, chlorophyll, fatty acids and proteins, as well as secondary meta-
bolites such as lignin and flavonoids [51]. The effects of laboratory-
prepared Cu, Zn, Mn, and Fe oxide nanoparticles was assessed in low
concentrations (< 50mg/L) as micronutrients, on the germination of
lettuce (Lactuca sativa) seeds. The results showed that CuO nano-
particles were slightly more toxic than Cu ions, while the toxicity of
ZnO nanoparticles was similar to that of Zn ions. However, MnO na-
noparticles and FeO nanoparticles were not only less toxic than their
ionic counterparts but they also stimulated the growth of lettuce
seedlings from 12% to 54% [6]. Other micronutrient nanofertilizers
have also been tested in a number of crops (see Table 1 for additional
examples).

3.3. Nanobiofertilizers

Biofertilizers are formulations or preparations containing one or
more microorganisms enhancing soil productivity, by fixing atmo-
spheric nitrogen, solubilizing phosphorus or stimulating plant growth
through synthesis of growth-promoting substances [70–72]. Therefore,
nanobiofertilizers could be defined as the integration of biofertilizers
with nanostructures or nanoparticles in order to improve the growth of
plants [73]. To achieve this goal is essential to control the delivery of
biofertilizers in the soil and extend the useful life of formulations
(Fig. 3).

Some of the most important aspects in nanobiofertilizers develop-
ment are the interaction between nanoparticles and microorganisms,
the shelf life of biofertilizers and its delivery. The interaction between
gold nanoparticles and plant growth promoting rhizobacteria was
shown to exert positive effects [74,75]. By contrast, silver nanoparticles
cannot be used with biofertilizer because it causes adverse effects on
biological processes in microorganisms, like alteration of cell mem-
brane structure and functions [76]. On the other hand, the shelf life of
biofertilizers is a limiting factor in these formulations and the use of
nanomaterials can improve it. Use of nanoformulations can be helpful
to enhance the stability of biofertilizers with respect to desiccation,
heat, and UV inactivation. For example, polymeric nanoparticle coat-
ings can be used to develop formulations resistant to desiccation and
consequentially improve the useful life of these products [73,77].
Moreover, nanomaterials can be used to improve the delivery of bio-
fertilizers to soil and plants. Trials using hydrophobic silica nano-
particles to the water-in-oil emulsion have shown an improvement in

Fig. 2. Methods for the synthesis of nanofertilizers. Physical (top-down), chemical (bottom-up) and biological approached for the production of nanofertilizers.
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the delivery of the product, as well as an enhancement in shelf life by
reduction of desiccation [78]. Nevertheless, there is a fundamental
problem in nanobiofertilizers production, since the nanoscale con-
structs are usually smaller than cells. In this regard, macroscopic filters
made of radially aligned carbon nanotube walls, which can absorb Es-
cherichia coli, could be used as a promising technology to collect other
microorganisms from fermentation processes and deliver them to the
plants [73,79]. Therefore, nanobiofertilizers can solve some limitations
of biofertilizers, but this technology still requires further research and
development.

4. Nanofertilizers for abiotic stress tolerance

Plant productivity depends on a combination of various vital factors
such as soil fertility, good quality irrigation water, and an appropriate
light intensity and temperature, among other environmental factors, so
that any deviation in one or more of these factors causes adverse effects
on plant productivity [80]. Unfortunately, during the crop growth
cycle, a plant has to constantly face several biotic and abiotic stresses.
Drought, heat, salinity, waterlogging, and cold, among others, are
major abiotic stresses that cause huge losses to agriculture globally by
reducing yield and product quality [81]. Being sessile in nature, plants
must combat these stresses in situ. These stresses either individually or
in combination, negatively affect the morphological, physiological,
biochemical and molecular changes in plants that ultimately decrease

productivity [82]. In recent years, in view of climate change the se-
verity of these abiotic stresses is expected to increase in the upcoming
decades that clearly depict a threat for crop production [81]. In this
context, there is an increased interest towards the use of nano-
technology in the agriculture sector [83]. Different types of nanoma-
terials have been evaluated for their possible role in managing different
abiotic stresses, and a summary of their positive, negative and neutral
effects on various crops under various abiotic stresses is shown in
Table 2.

Numerous studies have been performed for the endurance of abiotic
stresses with different nanomaterials resulting both in positive or ne-
gative impacts on plant growth under abiotic stress conditions
[38,102]. Applications of silver (Ag) nanoparticles (20 nM; 0.05, 0.5,
1.5, 2 and 2.5mg L−1) suspensions were tested on germination and
growth of Solanum lycopersicum L. under two levels (150 and 100mM)
of salinity and observed that the germination rate, germination per-
centage, seedling fresh and dry weights and root length were improved
under salinity. Furthermore, evaluation of salt stress-related genes
using semi-quantitative RT-PCR showed that exposure to AgNPs caused
upregulation of four genes (AREB, P5CS, MAPK2 and CRK1) and down-
regulation of three genes (TAS14, ZFHD1and DDF2) under salt stress
[100]. Also, the nanotoxicity of AgNPs was evaluated and compared to
AgNO3 (both at 500 μM and 1000 μM applied with nutrient solution) in
Cucumis sativus and reported that increasing concentration of both
AgNPs and AgNO3 posed adverse effect on seedling growth, but the

Table 1
Impact of different micronutrient nanofertilizers on various crops under non-stressful conditions. Abbreviations: ROS, reactive oxygen species.

Type Conc. Crop Effect Ref.

Fe 50, 500 and 2000mg/L Cucumber Dose-dependent effects on biomass and antioxidant enzymes [49]
Fe 10, 20mg/L Lettuce Reduced growth and chlorophyll contents, and increased antioxidant enzyme activities [53]
Fe 30-60 ppm Garden pea Improved seed mass and chlorophyll content [54]
Cu 0, 100, 500mg/L Squash Higher ionic Cu found in media amended with bulk Cu than with nCu [55]
Cu 130, 660mg/Kg Lettuce Increased shoot/root length ratio [56]
Cu 0, 10, 20mg/L Lettuce Negative effects on nutrient content, dry biomass, water content and seedlings growth [53]
Cu 0-1000mg/L Cucumber Reduced growth and increased antioxidant enzymes [57]
Cu 10-1000mg/L Radish, grasses DNA damage, growth inhibition [58]
Cu 50-500mg/L Tomato Improved fruit firmness and antioxidant content [59]
Cu 0, 20, 80mg/Kg Cilantro Reduced germination and shoot elongation [60]
Cu 100, 250, 500 ppm Bean Growth inhibition and nutrition imbalance [61]
Cu 100-500mg/L Garden pea Reduced plant growth and enhanced ROS production and lipid peroxidation [62]
Zn 1000mg/Kg Cucumber Root tip deformation and growth inhibition [63]
Zn 500mg/Kg Garden pea Decreased chlorophyll and H2O2 contents [64]
Zn 1000mg/L Spinach Growth reduction [65]
Zn 1 mg/ mL Tomato, eggplant Reduced fungal disease [66]
Zn 100, 200, 500 ppm Chili pepper Improved germination [67]
Zn 0-400mg/Kg Coriander Improved pigment contents and defense responses [68]
Zn 5,10, 20mg/L Onion Inhibition of root growth [69]

Fig. 3. Mechanisms of action of nanobiofertilizers in crops. A diagram indicating the major beneficial effects of nanobiofertilizers.
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severity of AgNO3 was greater than that of AgNPs. Moreover, promi-
nent disintegration of endodermis and degeneration of root cortical
cells was observed in seedlings exposed to AgNO3. Therefore, AgNPs
was less toxic than AgNO3 and possess more potential for C. sativus
production [103]. Recently, the role of nano-calcium (LITHOVIT ®),
glycinebetaine (GB), acetylsalicylic acid (aspirin) and monopotassium-
phosphate fertilizers were evaluated for relieving salt stress in Solanum
lycopersicum, and it was found that LITHOVIT® was the most effective,
increasing the fruit number and yield by 76% [104].

The effect of 0, 10, 50 and 100mg L−1 of SiO2 nanoparticles
(10–15 nm size) were studied on vegetative, physiological and bio-
chemical characteristics of Prunus mahaleb under drought. High doses of
SiO2NPs suspensions provided with irrigation water before imposing
drought treatments were more effective than low doses in alleviating
drought stress to P. mahleb [102]. The effects of iron nanoparticles and
salicylic acid (SA) were examined for drought tolerance under in vitro
conditions in Fragaria× ananassa Duch [105]. They reported that ap-
plied iron NPs in suitable concentrations increased the drought stress
tolerance by optimizing iron nutrition and alleviated the negative ef-
fects associated with drought conditions. In another study, it was re-
ported that Ocimum basilicum plants were better able to endure drought
stress under the combined effect of gibberellin (GA3) and TiO2 [106].
Although AgNPs showed no positive impact on yield in Carum copticum
[107], SiNPs could improve tomato plants performance under a short-
term exposure to heat/cold stress [91]. In another study, multi-walled
carbon nanotubes (MWCNTs) showed negative effect on germination
percentage, vigor index, biomass accumulation, and root and shoot
lengths in a dose-dependent manner in Cucurbita pepo under drought
and well-watered conditions. The authors inferred that the poor ger-
mination and growth of seedlings fed with different concentrations (0,
125, 250, 500 and 1000 μgmL−1) of MWCNTs were associated with
changes in the activation of antioxidant enzymes [90]. Similarly, ap-
plication of cobalt ferrite (CoFe2O4) nanoparticles also showed a varied
effect in tomato grown in hydroponics [62]. They found that CoFe2O4

NPs had no effect on germination and growth of tomato plants, whereas
their highest level (1000mg L−1) enhanced root growth. At 250mg L−1

or higher CoFe2O4 NPs concentrations, reduced translocation of Mg and
Ca was observed. Catalase activity also decreased in the leaves and
roots of L. esculentum on exposure to CoFe2O4 NPs. Therefore, keeping
in view the positive and negative effects on crops, it is mandatory to
explore the role of different nanomaterials in a dose-dependent and
plant species manner under both laboratory and field conditions before
recommending any practical advice for their use in agriculture [108].

5. Limitation of nanofertilizers

In the context of sustainable agriculture, recent progress is un-
doubtedly witnessing the successful use of some nanofertilizers for
achieving enhanced crop productivity. However, the deliberate in-
troduction of this technology in agricultural activities could result in
many unintended non-reversible outcomes [13]. In this scenario, new
environmental and unintended health safety issues can limit the use of
this technology in horticultural crops’ productivity. Nanomaterial
phytotoxicity is also an issue in this regard since different plants re-
spond differently to various nanomaterials in a dose-dependent manner
[84]. Hence, it is crucial to consider the advantages of nanofertilizers,
but also their limitations before market implementation (Fig. 4).

Importantly, nanomaterials are very reactive because of their
minute size with enhanced surface area [101]. Reactivity and varia-
bility of these materials are also a concern. This raises safety concerns
for farm workers who may become exposed to xenobiotics during their
application [109]. These include not only those exposed to nano-
fertilizer manufacturing but also nanofertilizer application in the field.
Considering the anticipated benefits, there is consequently a need to
explore the feasibility and suitability of these new smart fertilizers.
Indeed, a considerable concern about their transport, toxicity and

bioavailability as well as unintended environmental impacts upon ex-
posure to biological systems, limit their acceptance to adoption in
sustainable agriculture and the horticulture sectors [8]. Risk assessment
and hazard identification of the nanomaterials including nanomaterial
or fertilizer life cycle assessment are critical as well as establishing
priorities for toxicological research. This is particularly true considering
the accumulation of nanoparticles in plants and potential health con-
cerns. Indeed, the use of nanofertilizers derived from nanomaterials
have raised serious concerns related to food safety, human and food
security [110,111].

Some studies have reported phytotoxic effect of nanoparticles
[112], and the uptake, translocation, transformation and accumulation
(phytotoxicity) of NPs in plants is dependent on species, dose and ap-
plication method as well as type of NPs (composition, size, shape,
surface properties) [112]. Examination of the degree of toxicity of each
NP in any given crop is important to study and understand the uptake
and translocation of nanofertilizers, the possible transformation of na-
noparticles when they interact with soil and plant compounds, and the
accumulation of NPs in different plant tissues [113].

5.1. Uptake and translocation of nanomaterials

Nanofertilizers can be absorbed by crops through the roots or
leaves. NPs can penetrate root epidermis and endodermis reaching the
xylem vessels, allowing it to be transported to the aerial part of the
plant. Moreover, NPs can be absorbed by leaf stomata and transported
to other plant parts through the phloem [112]. In both cases, NPs must
penetrate the cell wall by pores, and pore sizes may rage 3–8 nm.
Therefore, only NPs smaller than 8 nm could pass through pores and
reach the plasma membrane. Accordingly, NPs or aggregates bigger
than 8 nm cannot enter into cells [114]. It was recently shown that
tomato roots can absorb 3.5 nm Au NPs but not 18 nm Au NPs [2]. It
has been shown that CeO2 NPs can be absorbed by cucumber leaves and
consequently transported to different plant tissues [115] and Ag NPs
could be absorbed and distributed throughout the plant after foliar
exposure in lettuce plants [116].

The uptake and translocation of nanoparticles may vary from plant
to plant depending on its particular physiology and several mechanisms
of their uptake, transport and distribution within the plant [117]. In
several cases, plants activate defense responses against NPs. This ap-
pears to be particularly true for the metallic oxide-based nanofertilizers,
in which the plant faces the parent nanomaterials effects as well as the
metal ions produced by the dissolution of engineered nanofertilizers
[111,118]. An experiment with carrots comparing metal oxide nano-
particles (ZnO, CuO, or CeO2) and metal ions uptake demonstrated that
uptake of both nanometal oxides and metal ions occurred. Such uptake
and accumulation in edible parts may impose not only problems to the
physiology of plants, but also pose serious risks to human health [110].
It was shown in this study that metal oxide nanoparticles accumulated
in the outer layer of carrot and did not enter the fleshy part, while metal
ions entered the fleshy edible part and were potentially more toxic to
human health. It was suggested that this outer layer acts as a barrier to
restrict the inward penetration of engineered nanoparticles in the ed-
ible tissues [110]. Therefore, peeling the outer layer of root and tu-
berous vegetables will be required to reduce the toxic exposure to these
metal nanoparticles [111].

5.2. Transformation of nanoparticles

Nanomaterials are highly reactive. Therefore, when nanofertilizers
are used in crops and they interact with different components in the
environment, they are subject to transformations and changes in their
physicochemical properties [119]. NPs interact with organic and in-
organic substances in the soil, as well as with various plant components
that may alter the behavior, fate, and toxicity of NPs. When nano-
fertilizers are used in roots, NPs are exposed to root exudates in
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rhizosphere that can determine the behavior and toxicity of heavy
metals. For example, mesquite plants treated with Ni-(OH)2 NPs had Ni
(OH)2 in the roots but contained Ni NPs in the shoots and leaves, de-
monstrating the biotransformation process of this nanoparticle inside
the plant [120].

Other cases of biotransformation have been observed using CeO2

NPs in cucumber plants. Results showed 15% of Ce(IV) being reduced
to Ce(III) in the roots and 20% to Ce(III) in the shoots [26]. However,
another study showed that CeO2 NPs biotransformation did not happen
in cucumber roots, suggesting that NPs biotransformation requires
specific conditions in the plant rhizosphere [121]. Biotransformation
was also demonstrated in Ag NPs applied on lettuce plants. Ag NPs were
oxidized and Ag+ ions formed Ag complexes with thiol-containing
molecules [122]. Also, in another experiment using Ag NP in lettuce, it
was found that 33% of the NPs was transformed to Ag-glutathione
[123].

5.3. Accumulation of nanoparticles

Among the various issues, the most important might be the accu-
mulation of nanoparticles in plants and their food parts. The accumu-
lation of nanoparticles depends on many factors, but mainly on plant
species, tissue/organ that will be used directly as food or for food
processing, and nanoparticle type and size. Because of the variability in
interactions between NPs and plants, nanomaterials used in nano-
fertilizers can accumulate in plants and, in some cases, they can cause
toxicity problems, not only to plants but also to humans [118]. For
example, multi-walled carbon nanotubes induce phytotoxicity in red
spinach (Amaranthus tricolor L.) causing growth inhibition, production
of reactive oxygen species and cell death [68]. CeO2 nanoparticles can
accumulate and shut down the nitrogen fixation potential of soybean
[113], thus not only threating the future of leguminous crops in agri-
culture but also can cause human health problems. Further, in another
experiment, application of C60 (fullerene) to zucchini, soybean, and
tomato plants increased the accumulation of dichlorodiphenyldi-
chloroethylene (DDT) [124].

5.4. Further research and strategies to cope with toxicity problems

Nanofertilizers present a great opportunity in agriculture, but it is
necessary to work on strategies that cope with their accumulation and
potential risks for human health and the environment, while adopting
the advantages of using nanoparticles in crops. This young field of

research is achieving important goals and present an opportunity in the
future. Thus far, in vitro analyses have been developed to help in the
standardization of the correct dose and type of nanofertilizer re-
commended for each application and crop species, so that any potential
toxicity to the environment, crops and food is minimized [125]. An-
other important issue to take in account, but still little explored to date,
is not only the specific accumulation of NPs in edible parts of crops but
the bioavailability of the accumulated NPs to the next trophic level. In
this regard, specific studies of NPs bioavailability in edible parts are
urgently needed to use nanofertilizers safely.

6. Conclusions and future prospects

Nanofertilizers have a significant impact in the agriculture sector for
achieving enhanced productivity and resistance to abiotic stresses.
Thus, promising applications of nanofertilizers in the agrifood bio-
technology and horticulture sectors cannot be overlooked.
Furthermore, the potential benefits of nanofertilizers have stimulated a
great interest to increase the production potential of agricultural crops
under the current climate change scenario. The basic economic benefits
of the use of nanofertilizers are reduced leaching and volatilization
associated with the use of conventional fertilizers. Simultaneously, the
well-known positive impact on yield and product quality has a tre-
mendous potential to increase growers’ profit margin through the uti-
lization of this technology. However, despite the exciting outcomes of
nanofertilizers in the field of agriculture, so far, their relevance has not
yet been focused towards marketability. Uncertainty related to the in-
teraction of nanomaterials with the environment and potential effects
on human health must be explored in detail before spreading nano-
fertilizers at a commercial scale. Future studies must be focused on
generating comprehensive knowledge in these underexplored areas in
order to introduce this novel frontier in sustainable agriculture.
Consequently, nanofertilizer application safety and the study of the
toxicity of different nanoparticles used for nanofertilizer production
must be a research priority. Furthermore, an in-depth evaluation of the
effect of nanofertilizers in the soils with different physio-chemical
properties is necessary in order to recommend a specific nanofertilizer
for a specific crop and soil type. Biosynthesized nanoparticles-based
fertilizers and nanobiofertilizers should be explored further as a pro-
mising technology in order to improve yields while achieving sustain-
ability.

Fig. 4. Advantages and limitations of nanofertilizers. A correct use of nanofertilizers to improve crop yields requires before market implementation a careful
examination not only of their advantages for the physiology of plants, but also of their potential limitations for the environment and human health.
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